Question Number	Answer		Mark
1(a)(i)	Alpha particles are very ionising	(1)	
	So alpha particles have very low penetrating power		
	Or so alpha particles will be absorbed/stopped by the skin	(1)	2
1(a)(ii)	Gamma rays are very penetrating		
	Or Gamma rays will pass through the skin	(1)	1
1(a)(iii)	Handled using (long) tongs		
	Or never handled directly		
	Or (closed source) pointed away from people	(1)	
	Kept in a <u>lead</u> -lined box (when not being used)	(1)	2
1(b)	We cannot be sure which nuclei will decay next/when	(1)	_
	Or All nuclei will (eventually) decay		
	We know that the activity halves in a fixed period of time	(1)	
	Or We can calculate the activity using $A = A_0 e^{-\lambda t}$		
	Or We know that the activity decreases exponentially		
	Or Probability of decay is constant for a source		2
	Total for Question		7

Number 2(a)	${}^{14}_{7}\mathrm{N} + {}^{1}_{0}\mathrm{n} \rightarrow {}^{12}_{6}\mathrm{C} + {}^{3}_{1}\mathrm{H}$		
			1
		(1)	
	Top line correct	(1)	
	Bottom line correct	(1)	2
2(b)(i)	Background radiation would increase the count rate (by a constant amount)		
	Or Background count rate has to be subtracted (from the activity)	(1)	1
2(b)(ii)	Record the count for a long period of time	. ,	-
	Or Record the count more than once and find an average value	(1)	1
2(b)(iii)	Use of $\lambda t_{1/2} = \ln 2$	(1)	
	Use of $A = A_0 e^{-\lambda t}$	(1)	
	Correct time identified (65 years)	(1)	
	$A_0 = 42 \text{ Bq}$	(1)	
	Or	(-)	
	Use of $A = \frac{A_0}{2^x}$	(1)	
	Correct time identified (65 years) t	(1)	
	Use of $x = \frac{t}{t_{1/2}}$	(1)	
	$A_0 = 42 \text{ Bq}$	(1)	
	Example of calculation		
	$\lambda = \frac{\ln 2}{t_{1/2}} = \frac{0.693}{12.3 \text{year}} = 0.0563 \text{year}^{-1}$		
	$A = A_0 e^{-\lambda t}$		
	$\therefore 1.08$ Bq = $A_0 e^{-0.0563 \text{year}^{-1} \times 65 \text{year}}$		
	$A_0 = \frac{1.08 \text{Bq}}{0.0257} = 42.1 \text{Bq}$		4
2(c)(i)	Mass difference calculation	(1)	4
	Conversion to kg	(1)	
	Use of $\Delta E = c^2 \Delta m$	(1)	
	$\Delta E = 2.8 \times 10^{-12} \text{ (J)}$	(1)	
	Example of calculation		
	$\Delta m = (3.0155 + 2.0136) \text{ u} - (4.0015 + 1.0087) \text{ u} = 0.0189 \text{ u}$ $\Delta m = 0.0189 \text{ u} \times 1.66 \times 10^{-27} \text{ kg u}^{-1} = 3.14 \times 10^{-29} \text{ kg}$ $\Delta F = c^2 \Delta m = (3 \times 10^8 \text{ m s}^{-1}) \times 3.14 \times 10^{-29} \text{ kg} = 2.82 \times 10^{-12} \text{ J}$		4

2(c)(ii)	MAX 2		
	Very high temperatures [accept T~10 ⁷ K]	(1)	
	so that nuclei have sufficient energy to come close enough to overcome electrostatic repulsion [accept reference to strong interaction]	(1)	
	A collision rate large enough to sustain fusion (from a very high density)	(1)	2
	Total for Question		14

Question Number	Answer		Mark	
3 (a)	Activity is the rate of decay of (unstable) nuclei Or activity is the number of (unstable) nuclei that decay in unit time	(1)	1	
3(b)(i)	Background radiation/count will increase the recorded count Or background count must be subtracted from the recorded count Or background radiation contributes systematic error to the count [Do not accept "to correct for background radiation"]			
3(b)(ii)	Radioactive decay is a random process (so count for a fixed period will vary) [Ignore references to spontaneous, accurate, reliable]	(1)		
	Idea that repeating enables a mean/average value to be calculated	(1)	2	
3(b)(iii)	Use of $\lambda = \frac{\ln 2}{t_{1/2}}$ Use of $A = A_0 e^{-\lambda t}$ [allow 2.5 Bq for A_0 here; allow use of $N = N_0 e^{-\lambda t}$] A = 0.47 Bq [Allow calculation of number of half lives elapsed and use of $A = A_0 \left(\frac{1}{2}\right)^{t/t_{1/2}}$ for mp1 and mp2] Example of calculation: $\lambda = \frac{\ln 2}{t_{1/2}} = \frac{0.693}{8.0 \text{ d}} = 0.0866 \text{ d}^{-1}$ $A = A_0 e^{-\lambda t} = 6.38 \times e^{-0.0866 \text{ d}^{-1} \times 300 \text{ d}} = 6.38 \text{ Bq} \times 0.074 = 0.47 \text{ Bq}$	(1) (1) (1)	3	
3(b)(iv)	Idea that people have to be close to or ingest seaweed for any degree of risk Or β particles are moderately ionising Or β particles can enter body through the skin The half-life is short Or after a month the activity has decayed to negligible levels Or the radioisotope doesn't remain in the seaweed for very long	(1) (1)	2	
	Total for Question		9	

Question Number	Answer					Mark
4(a)(i)	Ionising radiat	ion removes el	ectrons from atoms/	molecules	(1)	1
4(a)(ii)						
	Least ionisin	g		most ioni		
	γ		β	α	(1)	1
4(b)(i)		Paper	0.5 cm aluminium	0.5 cm lead		
	α radiation	stopped	stopped	stopped	(1)	
	β radiation	passes through	stopped	stopped	(1)	
	γ radiation	passes through	passes through	passes through	(1)	3
4(b)(ii)	(There is the p	ossibility of) ex	xposure to neutrons		(1)	
	Uncharged pa	rticles are not (directly) ionising			
	Unenarged par	lucies ale not (incerty) tollishig		(1)	2
	Total for que	estion				7

Question Number	Answer		Mark
5(a)(i)	Top line correct Bottom line correct ${}_{1}^{2}H + {}_{1}^{3}H \rightarrow {}_{2}^{4}He + {}_{0}^{1}n$	(1) (1)	2
5(a)(ii)	Attempt at mass deficit calculation $\Delta E = 0.0175 \text{ GeV} (\text{accept } 2.8 \times 10^{-12} \text{ J})$ Example of calculation:	(1) (1)	2
	$\Delta m = (3.7274 + 0.939566 - 2.8089 - 1.8756) \text{ GeV/c}^2 = 0.0175 \text{ GeV/c}^2$ $\Delta E = 0.0175 \text{ GeV}$		
5(a)(iii)	Momentum is conserved	(1)	
	Mass of neutron is smaller, so speed is greater	(1)	
	$E_{\rm k} = \frac{1}{2} {\rm mv}^2$, so $E_{\rm k}$ is larger	(1)	
	Or		
	Momentum is conserved	(1)	
	$E_{\rm k} = p^2/2m$	(1)	
	<i>m</i> of neutron is smaller, so E_k is larger	(1)	3
5(b)	Use of $\lambda = \frac{\ln 2}{t_{\gamma_2}}$	(1)	
	Use of $A = A_0 e^{-\lambda t}$ t = 41 (years)	(1) (1)	3
	Example of calculation: $\lambda = \frac{\ln 2}{t_{\frac{1}{2}}} = \frac{0.693}{12.3 \text{ year}} = 0.0563 \text{ year}^{-1}$		
	$A = A_0 e^{-\lambda t} \therefore t = \frac{\ln(A/A_0)}{-\lambda} = \frac{\ln(0.1)}{-0.0563 \text{ year}^{-1}} = 40.9 \text{ years}$		

*5(c)	QWC – Work must be clear and organised in a logical manner using technical wording where appropriate		
	There is little possibility of a runaway fusion reaction (unlike fission)	(1)	
	There would not be any radioactive waste produced in the <u>fusion</u> process Or the flux of neutrons would produce radioactive isotopes when		
	absorbed by materials in the reactor	(1)	
	A very/extremely high temperature (plasma) is required	(1)	
	Plasma must not touch reactor walls, so strong magnetic fields are required	(1)	
	If plasma touches the walls of the reactor its temperature falls (and fusion stops)	(1)	5
	Total for question		15